skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Yuan-Yuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As an electron-deficient element, boron possesses fascinating three-dimensional structures and unconventional chemical bonds. Nanoclusters of boron have also been found to exhibit intriguing structural properties, observed to have predominantly planar structures, in stark contrast to bulk boron allotropes, which are composed of the ubiquitous B12icosahedral building blocks. Here, we report observation of the 2D-to-3D transition and bulk-like structural features in the size-selected boron clusters, as revealed by photoelectron spectroscopy, chemisorption experiments, and first-principles calculations. In the small to medium cluster size range, planar boron cluster anions are found to be unreactive and only B46and B56are observed to chemisorb C2H4and CO under ambient conditions, suggesting major structural transitions at these cluster sizes. Notably, B56is also found to be able to chemisorb and activate CO2. The global minimum of B46is found to adopt a core-shell structure (B2@B44), consisting of a B2core within a B44shell, reminiscent of the interstitial B2dumbbells in the high-pressureγ-B28form of bulk boron. More remarkably, both the global minimum and the second most stable isomer of B56exhibit nest-like configurations, featuring the iconic B12icosahedral core surrounded by a B44half-shell (B12@h-B44), signifying the onset of bulk-like structural characteristics in boron nanoclusters. 
    more » « less
    Free, publicly-accessible full text available November 25, 2026
  2. Abstract Despite its electron deficiency, boron can form multiple bonds with a variety of elements. However, multiple bonds between boron and main-group metal elements are relatively rare. Here we report the observation of boron-lead multiple bonds in PbB2Oand PbB3O2, which are produced and characterized in a cluster beam. PbB2Ois found to have an open-shell linear structure, in which the bond order of B☱Pb is 2.5, while the closed-shell [Pb≡B–B≡O]2–contains a B≡Pb triple bond. PbB3O2is shown to have a Y-shaped structure with a terminal B = Pb double bond coordinated by two boronyl ligands. Comparison between [Pb≡B–B≡O]2–/[Pb=B(B≡O)2]and the isoelectronic [Pb≡B–C≡O]/[Pb=B(C≡O)2]+carbonyl counterparts further reveals transition-metal-like behaviors for the central B atoms. Additional theoretical studies show that Ge and Sn can form similar boron species as Pb, suggesting the possibilities to synthesize new compounds containing multiple boron bonds with heavy group-14 elements. 
    more » « less
  3. null (Ed.)
    Size-selected negatively-charged boron clusters (B n − ) have been found to be planar or quasi-planar in a wide size range. Even though cage structures emerged as the global minimum at B 39 − , the global minimum of B 40 − was in fact planar. Only in the neutral form did the B 40 borospherene become the global minimum. How the structures of larger boron clusters evolve is of immense interest. Here we report the observation of a bilayer B 48 − cluster using photoelectron spectroscopy and first-principles calculations. The photoelectron spectra of B 48 − exhibit two well-resolved features at low binding energies, which are used as electronic signatures to compare with theoretical calculations. Global minimum searches and theoretical calculations indicate that both the B 48 − anion and the B 48 neutral possess a bilayer-type structure with D 2h symmetry. The simulated spectrum of the D 2h B 48 − agrees well with the experimental spectral features, confirming the bilayer global minimum structure. The bilayer B 48 −/0 clusters are found to be highly stable with strong interlayer covalent bonding, revealing a new structural type for size-selected boron clusters. The current study shows the structural diversity of boron nanoclusters and provides experimental evidence for the viability of bilayer borophenes. 
    more » « less